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Abstract-Steady state two-dimensional temperature distribution and heat flow in prismatic bars with 
isothermal boundary conditions and various external geometry were computed and tabulated. The 

method of conformal mapping was used. 

R&unC-Le flux de chaleur et la distribution de tempkrature bidimensionnelle, en rkgime permanent, 
dans des barres prismatiques avec des conditions aux limites isothermes et des g&omCtries exterieures 

varites ont CtC calcults et tabulbs. La mkthode de la reprksentation conforme a &? utilisee. 

Zusammenfassung-Mit Hilfe der konformen Abbildung wurde die station&e zwei-dimensionale 
Temperaturverteilung und der Wgrmefluss in prismatischen KGrpern mit isothermer Begrenzung und 

verschiedenen tiusseren Abmessungen berechnet und in Tabellen angegeben. 

i\HHOTthUW-aaH aHaJIHTAYeCKOe peUIeHHe CTaqIJOHapHOrO J(BJ'XMepHOrO TeMIIepaTypHOrO 

nOJtR II OnpeAeJIeH TeIIJIOBOti IIOTOK B IIpH3MaTWIeCKHX 6pycKax npn H30TepMHYeCKHX rpa- 

HwiHbIx ycnos~lrrx II pa3JrHsHofi BHeluHefi reoMeTpmi GP.JWOB. Pemenne conpo9o~~aeTcn 
paCrIBTaMEI,IIpeACTaBJIeHHbIMH B B-Ifne T&IHIl II PHCJ'HKOB. - 

NOMENCLATURE 

thermal conductivity; 
the axial dimension of a prismatic 
bar ; 
heat flow rate; 
shape factor; 
temperature at a point (x,~); 
temperature at the inner boundary: 
temperature at the outer boundary; 
complex number in the +,Y plane ; 
Cartesian co-ordinates of a point; 
complex number in the x,y plane; 
Laplacian operator ; 
difference; 
polar co-ordinates of a point; 
Cartesian co-ordinates of a point in 
the mapping plane ; 
values of 4 and Y at the outer 
boundary; 
values of + and Y at the inner 
boundary. 

n sided regular polygon 
A,*, coefficient of the n’th term in a poly- 

nomial; 
a. the shortest distance from the center 

to a side of a regular polygon; 

.i. running index; 
n. number of sides of polygon; 

P. non-dimensional ratio of radii as 
defined by equation (4.1). 

Rectangle 

a, one half of the shorter side of a 
rectangle; 

b, one half of the longer side of a 
rectangle; 

K, a constant term as defined for a 
rectangle by equation (5.5a). 

Eccentric circle 
E, eccentricity ratio as defined in Fig. 9. 

Ellipse 
a, the major axis of the inner ellipse: 
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b, the minor axis of the inner ellipse ; 

2 
the major axis of the outer ellipse; 
the minor axis of the outer ellipse. 

STATEMENT OF THE PROBLEM 
THE steady state temperature distribution and 
heat flow in prismatic bars of various cross- 
sections are to be investigated. The bar material 
is assumed to be homogeneous, isotropic and 
with temperature-independent properties. The 
heat flow is due to central heat sources uniformly 
distributed along the bar axis maintaining uni- 
form surface temperature. 

The geometrical shapes considered are: 

Class 1-“n-sided” regular polygon with small 
circular hole in the center. Special 
cases : triangle, square, pentagon, hexa- 
gon, heptagon, octagon, nonagon, 
decagon, circle. 
A circular bar with an eccentric hole. 

Class 2-Rectangle with small circular hole in 
the center, and with variable “aspect 
ratio”. 

Class 3-Elliptical cross-sections with a confocal 
elliptical hole, and with a confocal 
slit (a slit connecting the foci of the 
ellipse) as inner boundries. 

THEORETICAL CONSIDERATIONS 
Solutions of the problems will be obtained by 

the method of conformal mapping. A short 
review of the method follows El].- 

The temperature distribution in 
satisfied Laplace’s equation, 

the systems 

in the domain of the x,Y plane with the tem- 
perature T = T, and T = Ti along the boun- 
daries (p&y), the outer boundary, and ~~(x,y), 
the inner boundary, respectively. 

It can be shown if + and Y form a new co- 
ordinate system given by 

4 = 5%%Y) 

y = W,Y) 

such that 

w = # + iY =f(x + iy) =f(pe’B) =f(z) 

with the conditions that f(z) is analytic and 
f’(z) is not equal to zero, then the temperature 
distribution in the new co-ordinate system also 
satisfies the Laplace’s equation 

and the temperature at the boundary fs .= t;6, is 
T,, and correspondingly, at 4 = #& is T, 12-41. 

The application of this method is done by 
choosing a known solution in the $.Yr plane. 
and by an appropriate choice of the mapping 
function,f(x + iY). 

The simplest solution in the +,Y plane is for 
one dimensional heat flow, with the boundary 
conditions that along 4 = &, the temperature is 
r,, and along # = &, it is T,. Then 

c - 4% 
T ~ To = (T, - To) 7LT-qo. (1) 

The heat flow for the one dimensional case 
between the flow lines ul,, and ‘111, is, according 
to Fourier’s Law, equal to 

where L is the width of the bar and dY = Y2 - 

y,. 
It can be shown that the resultant heat flow 

computed in the +,Y plane is identical to the 
heat flow in the x,y plane. The heat flow per 
unit width is 

or 

where the shape factor, S, is defined as: 

.dY ~. 
s = $. - &’ 

STEADY TRANSVERSE HEAT FLOW’ IN 
PRISMATIC RODS WITH “n-SIDED” REGULAR 

POLYGON CROSS-SECTIONS 
Consider a long regular prismatic rod with 

a concentric circular hole, Fig. I. The tempera- 
tures at the inner circular boundary, and at the 
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II n Number of Sides of PolYOOn 

FIG. 1. Prismatic rod with “n-sided” regular ply- 
gonal cross-section. 

o&x prismatic bo~~da~ are Tz and T,, respec- 
tively. 

The mapping function which transforms the 
one dimensional heat flow in the +,Yplane into 
the configuration af Fig. 1 is 

w = d, + i!P = 2 la z -t_ gAj, pj~ eijnO (4.1) 
_i=o 

YT = number of sides of polygon, 

p zzz 5. 
G 

The choice of this particular mapping function 
was due to: 

(a) The influence of the power series 
diminishes taward the center. The lowest 
power of 3, for the case of a triangle, does 
not appreciably distort the temperature 
near the source. 

(b} The “n” fold symmetry accounts for the 
geometry of the “n-sided” polygon. On 
the outer boundary the contribution from 
the source is small compared with that 
from the power series. 

The real part (+) is: 

#~~n~~~A~~A~~~~~~~~ 

+ Aznp2n cos 2raB -+ A8np3= cos 3n@ + ~ . Ij (4.2) 

and the imaginary part (u) is: 

F = 26 + A, p sin n0 

-+ A2?ap2n sin 2nd i- A31ap3’e sin 3~0 + . . . (4.3) 

The coefficients A*, A,, A,,, and Ass can be 

computed to yield the vahre of r,, or (QtQ = 0) at 
the points A, B, C, and D, considering only the 
first five terms of the series solution, (4.2). 
The values of these coefficients are given in 
Table 1 for various values of ‘W’~ 

-- 
I 

n 
i 

A0 j A 1 Azn 

3 1*13!?16 1.83402 lG9469 
-- 

4 054159 0.59131 0@5767 
-, 

5 1 0.32131 0.29838 -0~01111 

71 0+21339 / 0.18145 1 -0*01839 2 1 

L/ 0~35214 j 0.12233 j -0+X704 

8 011397 0.08818 -0a1457 
~ -,--’ -- 

9 O%X%KK! 0.06642 -0.01218 
-- 

10 0.07076 0~05201 -0~01029 
/ 

. i * f 
‘ . . 

* i 
co 0 6 i, 

- _I~ --- 

__ 

-_ 

I_ 

i  

_;_ 

i  

-I -_ 

__ _~_ 
z 

A s= 

0.39984 

0.00796 

0.01183 

0.01355 

@012:6 

0.01123 

000972 

OGO841 

. 
f 

0 

The method described above results in an 
approximation, and the outer boundary tem- 
perature is equal to To at the few points selected. 
The maximum deviations from the constant 
value (To) were computed for the triangle and 
square, expecting the largest error in these cases. 
The deviation is less than (Ta - ?‘,)jlSO in the 
case of the triangle, and (T$ - Jb)/2000 for the 
square. Therefore, for all practical cases, along 
the outer prismatic boundary, the value of $ is: 

do = 0. (4.4) 

Along the inside circular boundary for small 
values of pI(pi 4 1) 

(fd = ln P,” + A0 (4.5) 

resulting in a constant temperature along the 
inner circular boundary. 

Since B varies from 0 to 2~ in the x-,J’ plane, 
then from (4.3) 

dY=&. f4.5) 
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FIG. 3. Temperature distribution in a prismatic rod with 
triangular cross-section. 

3 4 5 6 7 8 9 IO CO- 

n - Number of Sides of Polygon 

FIG. 2. Shape factor versus number of sides of 
regular polygon. 

c 

T-T. = 
T, - To 

09 
+ 0.54159 

FIG. 4. Temperature distribution in a prismatic rod with square cross-section. 
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5. Temperature distribution 
prismatic rod with penta- 
gonal cross-section. 

\ T-T*= 
‘i - 10 

117 

FIG. 6. Temperature distribution 
in a prismatic rod with hexagonal 

cross-section. 
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The temperature distribution is then obtained It is interesting to notice the close similarity 
by substituting (4.2), (4.4), and (4.5) into (1). of this equation to the equation (4.8) as re- 

written in the form 

T _ To = -?“?!_ (In p2 6.28318 
ln P: + A0 

s=__---* (4.10) 

+ A,, + A,,9 cos nd + A2np2n cos 2nd 
In z - O-27079 

+ &p3” COS he) (4.7) 
The agreement betweeh the analysis and the 
experimental findings is excellent. 

and substituting (4.4), (4.5), and 14.6) into (3) Moore [6] used field maps to study the prob- 

yields the shape factor lem of a square with a central hole. The result 
reported by Moore and Smith et al. show not 

(4.8) only an excellent agreement for small values of 
r(/a, but the agreement is close even for 
i-,/a = 0.7. 

It should be noted that A0 is the only coefficient 
affecting the value of the shape factor for rz/rg 
su~cien~y small. 

Values of the shape factor versus the number 
of sides of the polygon, “n”, appear in Fig. 2. 
The temperature distribution for the triangle, 
square, pentagon, and hexagon are shown in 
Figs. 3, 4, 5 and 6. 

Smith et al. [5] used an electrical analogue to 
determine the shape factor for a square with a 
central hole. From the graphical data, an 
empirical equation for the shape factor (written 
here with the notation used in this paper) was 
defined as 

STEADY TRANSVERSE HEAT FLOW IN 
PRIS~A~C BARS WITH ~CT~GULAR CROSS- 

SECTIONS 

The configuration under study is represented 
in Fig. 7, and consists of a rectangle with sides 
2a and 2b, having a circular inner boundary. The 
temperatures at the inner and outer boundaries 
are Ti and To respectively. 

The mapping function which transforms the 
one-dimensional heat flow in the #,?P plane with 
constant temperatures at #i and & to the con- 
figuration of Fig. 7 in the x,y pIane is 

II’ = 4 + iY 

s _ _-!z!L 
ln :!! _ 0.264’ 

L 

= 2 2 (- 1)” In [coth c (z & 2&)], (5.1) 
n-0 

------ ----- .~-- ~- b 

T* 

, 

FIG. 7. Temperature distribution in a prismatic rod with rectangular cross-section (b/a = 2). 
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This form of the mapping function was obtained Tab/e 2. Values of Kfor ua~~~us b/a ratios fo be used 
by filling the x,y plane with an infinite matrix of wit/z equations (5.7) and (5.8) 

sources and sinks spaced by 2b in the x direction __I__- 

and by 2a in the y direction. b K 

The real part (9) is: 0 
---- 

$ = J‘(-l)“ln 
/ 
II = 0 

!_ 

- -. ny la0 0.08290 

‘OS 
1+ 

22 1.2.5 0.03963 
_.~~- 

cash & (X + 2nb) 1.50 / 0.01781 

““Y (5.2) 1.15 0.00816 

l- 
‘OS Z 2ao oaO373 

cash $ (x & 2nb) 2.25 
j 

oaO17o 
- - 

The imagina~ part (Y) is: 
-. 

co 

Y=2 
c 

(-l>n+l tan-l 

n=O 

(5.3) 

The value of I# at the outer boundary of the 
rectangle is : 

$0 =o (5.4) 

at the inner circular boundary, when r,/2 < 1, 
(or x/a .=g 1, y/a < I), (f, converges from (5.2) to 

46 = 2 In s 
I 

m m 

-4 ~ 
cc 

(- 1)‘2”1 mb 

(2mf 0 
sechW+r) - 

a . (5.5) 
m=O n=l 

The double-summed term can be shown to be 
convergent and it will henceforth be denoted 
by K, so that 

#,=2ln$4K 
i 

(5.5a) 

where : 
m m 

K= se&(2”+1) T. 
m=O n=l 

The values of K are listed in Table 2 for various 
bJa ratios. 

2.50 0mO78 

3GO I O-o0016 

4.00 6.9748 x 1O-e 

500 3.0140 x 10-T 

IOGO 4.5422 x lo-l4 

i : 

a, I 0 

The variation of 0 in the x,y plane from 0 to 2 
corresponds to a variation in the +,Y plane 
from YI = 0 to vl, = -43r. Thus 

A!P = -4~. (5.6) 

The temperature distribution is then given by 
substituting (5.2), (5.4), and (5.5) into (I): 

T-TO= 
II - T, 

2lng--4K 
I 

r 7ry - 

Ii 
cos 2a 

co 

z cash ;; (X i 2nb) 

X -’ (- 1)” In 
“Y 

n-0 

l-- 
cos il;: 

cash & (x & 2nb) 
- - 

, (5.7) 
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The shape factor is obtained by substituting 
(5.4), (5.5) and (5.6) into (3): 

2rr 
S= 

In 
40 -.- - (5.8) 

- 2K 
?TI’, 

The temperature distribution is illustrated for 
h/a = 2 in Fig. 7, and the values of the shape 
factor versus aspect ratio b/n are plotted in 
Fig. 8. 

I I I / 
fa k S(Ti-TJ 

I 

+-Aspect Rotio 

FIG. 8. Shape factor versus aspect ratio of rectangular. 

When b/a tends to infinity, the temperature 
distribution of (5.7) and the shape factor, S, 
as given by (5.8), describe the case of an infi- 
nitely long strip with an inner circular boundary 
on the center line of the strip. 

STEADY TRANSVERSE HEAT FLOW BETWEEN 

ECCENTRIC CIRCULAR CYLINDERS 

Consider a bar with a circular outer boundary, 
and an eccentric circular inner boundary. The 
outer and inner boundary temperatures are T,, 
and Ti respectively. 

This problem is briefly discussed in Carslaw 
and Jaeger [2], and is quoted here briefly for the 
sake of completeness only. 

The values of the shape factor versus eccentri- 
city ratio, E, are plotted in Fig. 9. 

0.2 0.4 0.6 0.6 IO 

d _ Eccentricity Ratio 
r. 

FIG. 9. Shape factor versus eccentricity ratio. 

STEADY T~S~RSE HEAT FLOW IN 

PRISMATIC BARS WITH ELLIPTICAL CROSS- 

SECTIONS 

Consider a prismatic bar with confocal 
elliptical inner and outer boundaries. The 
temperatures of the outer and inner boundaries 
are T,, and T,, respectively. 

The mapping function which transforms the 
one-dimensional heat Aow in the $,Y plane with 
constant temperatures at & and (PO to the con- 
figuration of Fig. 10 in the x.1’ plane is [7]: 

*I = 4 + iy == -_i sin-1 1 . 
.f 

(7.1) 

The expressions for 4 and Y are given in the 
implicit form 

and 
X2 J-2 

f2sin2Y j 2 cos2 Y 
= 1. (7.3) 

Along the outer boundary 

d 
+,, = tanh-’ 

f 
(7.4) 
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FIG. 10. Temperature distribution in a prismatic rod 
with confocal elliptical cross-section (c/d = 1.058; 

b/d = 0.10). 

and along the inner boundary 

#& = tanh-l ’ 
a 

where 

,a-@=f” 

a2 - b2 = f”. 

(7.5) 

The values of Y undergo a change of 

LIY = 2rr. (7.6) 

The temperature distribution is given by 
substituting (7.4) and (7.5) into (1): 

T - Tc = (T, - T,,) ------ >-kb. (7.7) 
In ~ 

c+d 

The appropriate value of # can be determined 
from (7.2) for particular values of x and y. 

The shape is obtained by substituting (7.4), 
(7.5), and (7.6) into (3): 

s = _.?~.- 
In .L+. d’ 

a-j-b 

(7.8) 

The temperature distribution is shown in 
Fig. 10, and the shape factor is plotted versus 
the ratio of major to minor axis, c/d, in Fig. 11. 

The case of the inner boundary degenerating 
into the focal slit, a slit connecting the foci of the 

60 
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30 
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z 
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t 
0 

iz 
I 15 

v) 

IO 

5 

0 
I 2 3 4 

_ N Semi -major Axis C 

d Semi-minor Axir 

FIG. 11. Shape factor versus c/d ratio of confocal 
ellipses. 

outer elliptic boundary, is given by the curve 
bfd = 0. 

SUMMARY 

The temperature distribution and the heat 
flow for long prismatic bars with constant tem- 
peratures at the outer and inner boundaries 
were computed and the results are summarized 
in Table 3. 
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Table 3. Summary of results 

Shape and notation 

Triangle 

Square 

Temperature distribution 
Shape factor, S 

_:: = kS(T, - To) 

Ti - To 2 

T-To= 

In : ‘+ 1.13916 
0 

T 1.13916 

fi 
t 1.83402 (k)” cos 38 -t 1.09469 0 ; cos 68 

0 

+ 0.39984 (;)” cos 981 

T- r, = -T; - ro 

In ; + 054159 0 

p (i)” + 0.54159 

’ 

+ 0.59131 (k)” COS 48 -I- 0.05767 (i)” COS 88 

+ 000796 @‘” cos 1281 

T-T,= 
T - To 

In z ’ + 0.32131 0 
[ ii 
In ,i ’ + 0.32131 

’ 

$ 0.29838 :_ 
0 

’ cos 58 - 0.0111 E 
0 

lo cos 100 
r0 

+ 0.01183 (:)I” cos 1501 

2n 

In z - 0.56958 

2n 

In ‘0 -- 0.27079 
r> 

27 

In ‘O - 0.16066 
rr 

T-To= 
Ti - T,, 

2 a 
ln 0 ; + 0.21339 

+ 0,21339 

+ 0.18145 (k)’ cos 60 - 0.01839 0 L “~0s 128 
r0 

+ 0.01355 (y cos 1881 
n 

2n 

In z - 0.10669 

Hexagon 
” 

I 
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Shape and notation 

“n-Sided” regular polygon 
ti = no. of sides 

Temperature distribution 

__ 

Concentric circles 

+ A, ; n cos n0 + Azn - 
0 

r 2n 

0 
co5 2nB 

r. 

+ AJn (JJ” CDS 3ne] 

(See Table 1 for A,, A,, Aznt and A& 

i T--To 
/ 

ty 
! 
I 

Eccentric circles 

= T - To 
2cosh-, ( ‘+ d - c2 -- 

2Pi j 

- cash-’ 
1 - p; + 2 

2f j 

Where : 

pi = 3. e 

r0' 
fZ.- 

r0 

a (4 2 = (1 - P? + a2 _ * 
r. 49 

It __I-P;+oa - 
r0 2E 

-- 

I 

/ 

I 

C 

i 

.- 

Shape factor, S 

-!? = kS (Ti - To) 
L 

257 

In!??_+ 
ri 

2TT 

;os&’ 1 + P? - c2 
i 2P, 1 
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Table 3-continued 

1 , 
Shape factor, S 

Q 
L 

~ XSCT, T,,) 
Shape and notation Temperature distribution 

I- 

k-b-- 

Rectangle 

cos zu 
cash j; (x i 2nb) 

I -/- 

(See Table 2 for h’) 

Infimte strip 

Compute 4 from : 

I I 

Ellipse with focal slit 
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